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Abstract—Machine learning (ML) and Natural Language Pro-
cessing (NLP) have achieved remarkable success in many fields
and have brought new opportunities and high expectation in the
analyses of medical data. The most common type of medical data
is the massive free-text electronic medical records (EMR). It is
widely regarded that mining such massive data can bring up
important information for improving medical practices as well
as for possible new discoveries on complex diseases. However,
the free EMR texts are lacking consistent standards, rich of
private information, and limited in availability. Also, as they are
accumulated from everyday practices, it is often hard to have
a balanced number of samples for the types of diseases under
study. These problems hinder the development of ML and NLP
methods for EMR data analysis. To tackle these problems, we
developed a model to generate synthetic text of EMRs called
Medical Text Generative Adversarial Network or mtGAN. It is
based on the GAN framework and is trained by the REINFORCE
algorithm. It takes disease features as inputs and generates
synthetic texts as EMRs for the corresponding diseases. We
evaluate the model from micro-level, macro-level and application-
level on a Chinese EMR text dataset. The results show that the
method has a good capacity to fit real data and can generate
realistic and diverse EMR samples. This provides a novel way
to avoid potential leakage of patient privacy while still supply
sufficient well-controlled cohort data for developing downstream
ML and NLP methods. It can also be used as a data augmentation
method to assist studies based on real EMR data.

Index Terms—synthetic EMR text, conditional model, genera-
tive adversarial network, reinforcement learning

I. INTRODUCTION

The widespread adoption of Electronic Medical Records
(EMR) has brought new opportunities in the biomedical do-
main, of which clinical narratives are significant components.
However, due to relevant laws and regulations for the protec-
tion of patient privacy, EMR data are generally inaccessible
to the majority of the ML community. In addition, when
studying a disease, the positive and negative EMR samples
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are usually highly imbalanced, which makes it difficult to train
ML algorithms with real medical records. As a result, we aim
to develop a model to generate synthetic textual EMR datasets.

A general way to alleviate the privacy risks is via de-
identification, which is the process of reducing the information
associated with an individual’s identity. The anonymization
is typically done by applying generalization and suppression
operations to modify the patients’ attributes [1]. However,
these approaches cannot fully avoid privacy disclosure, since
the anonymous patients can be re-identified using specific
information [2]. Generating synthetic text of medical records
is a way to completely avoid possible re-identifications. Text
generation is one of the most fundamental problems in natural
language processing. During the recent decade, deep neural
networks have achieved remarkable success in several tasks
and researchers are paying more attention to the text genera-
tion via deep learning models. A promising approach to text
generation is training a recurrent neural network (RNN) by
maximum likelihood estimation (MLE) [3]. However, it suffers
from the well-known exposure bias [4] problem. The success
of Generative Adversarial Network (GAN) [5] has inspired
researchers to investigate adversarial training over textual data,
while another new problem has arisen when using GAN to
generate discrete data: the gradient cannot be back-propagated
from the discriminator to the generator. Some related work
(such as SeqGAN [6]) utilize the REINFORCE algorithm [7],
which is a classical policy gradient algorithm in reinforcement
learning, to optimize the original GAN objective.

Our proposed model Medical Text Generative Adversarial
Network (mtGAN) is a GAN-based framework and we adopt
the REINFORCE algorithm to train the model. To satisfy
different demands of research, our mtGAN is a conditional
model with designated disease features as inputs, and can
generate corresponding EMR text data. We test three dis-
criminative models (fastText, CNN, BiRNN) and different
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methods to rescale rewards to achieve the best performance.
We design micro-, macro- and application-level experiments
to demonstrate the effectiveness of our model. In the micro-
level experiment, our model has the strong ability to fit the
real data and generate diverse examples at the same time. In
the macro-level experiment, our model has the best adversarial
success in the adversarial evaluation. In the application-level
experiment, we design a disease classification experiment and
the results suggest that the synthetic EMR texts generated by
our model are capable of producing comparable properties to
real data. Therefore our synthetic datasets can also be used as
a data augmentation approach for machine learning tasks.

II. RELATED WORK

Text generation has been one of the most challenging
problems in natural language processing. RNN and its variants
Long Short-Term Memory (LSTM) [8] and Gated Recurrent
Unit (GRU) [9] have achieved impressive performance in sev-
eral complex tasks, such as machine translation and dialogue
generation [10]. The RNN language models are commonly
used for sequence generation, and they are trained by MLE
in an approach called teacher forcing [11]. This mainstream
method for auto-regressive models predicts the next token
given the previous ground-truth tokens, which leads to the
exposure bias problem.

GAN proposed by Goodfellow provides an alternative
framework to generate synthetic data. The GAN model con-
sists of two neural networks: a generator G trying to generate
synthetic data, and a discriminator D trying to distinguish
the real data from the synthetic. The training procedure is
a two-player zero-sum game between G and D. GANs have
enjoyed great success in image generation, but they are not as
much widely applied in natural language processing tasks. One
reason is that the gradient from the discriminator cannot be
back-propagated to the generator due to the discrete outputs.
To address this problem, Yu proposed seqGAN [6], where
the generator is updated through the policy gradient using
Reinforcement Learning (RL), and the reward is calculated
by the discriminator on a complete sequence via Monte Carlo
search. However, no one has ever used this kind of approach
in the case of generating synthetic EMR text.

Recent studies attempt to generate synthetic electronic med-
ical records via deep generative models. For example, Choi
proposed a new model medGAN to generate realistic EMRs
with high-dimensional binary and count variables [12]. Hyland
proposed a Recurrent (Conditional) GAN to generate real-
valued time series in medical application [13]. Yahi utilized
a GAN framework to produce continuous time series data in
EMRs, which can predict the effects of drug exposure [14].
However, most of the research on synthetic medical records
are based on highly structured data formats, including numer-
ical and categorical variables, while the majority of clinical
documents are saved in unstructured textual formats. Under
such circumstances, we propose a model called mtGAN for the
generation of synthetic EMR text. The primary contributions
of our paper are listed as follows:

∙ We propose mtGAN to generate synthetic EMR text.
∙ We can control the generation process with assigned spe-

cific disease features to satisfy various research demands.
∙ We design micro-level, macro-level and application-level

evaluation methods to assess the model performance, and
our model outperforms other baseline models.

∙ The application-level experiment results demonstrate that
our synthetic data can achieve similar performance in
machine learning tasks compared with the real data,
which can be used as a data augmentation approach then.

III. PRELIMINARIES

A. Synthetic EMR Text Generation Problem

The synthetic EMR text generation problem is fundamen-
tally a discrete sequence generation problem. Specifically,
suppose we have a set of real-world EMR data 𝑆+ = {𝑋𝑖}𝑁𝑖=1,
where each data consists of a sequence of words 𝑋 =
{𝑥1, 𝑥2, . . . , 𝑥𝑇 } and each word comes from a vocabulary of
candidate tokens. Our goal is to produce a set of EMR data
which have similar characteristics to real-world EMR data by
learning the underlying distribution of the real data 𝑝𝑑, so that
it can be used in more cases to substitute privacy-sensitive and
limited real EMR data.

B. Recurrent Neural Networks

In recent years, RNN and its improved variants, such as
LSTM and GRU, have shown remarkable results in the text
generation task. At each time step, RNN will encode previous
inputs to a hidden vector ℎ𝑡 and use it to conduct the inference
of the next token. This procedure can be formulated as:{

ℎ𝑡 = 𝑓(ℎ𝑡−1, 𝑥𝑡)
𝑜𝑡 = 𝑔(ℎ𝑡)

(1)

C. Generating with Maximum Likelihood Estimation

In the text generation task, the general training method is
Maximum Likelihood Estimation (MLE), which converts the
text generation problem to a sequential multi-label classifica-
tion problem. For a RNN generator 𝐺𝜃, the MLE objective
is to minimize the multi-label cross entropy, which can be
formulated as (2). For the simplicity of notations, we will also
denote the probability of generating tokens as 𝐺𝜃(⋅∣⋅).

𝐽𝐺(𝜃) = 𝔼𝑋∼𝑝𝑑
[−

𝑇∑
𝑡=1

log𝐺𝜃(𝑥𝑡∣𝑋1:𝑡−1)] (2)

D. Generating with Adversarial Reinforcement Learning

Although MLE has better convergence performance and
training robustness than other algorithms, it suffers from the
exposure bias problem, which makes MLE less useful in gen-
erating long texts. To tackle this problem, recent works focus
on generating texts under the GAN setting. In the standard
GAN setting, there is a generator 𝐺 that plays a minimax game
against a discriminator 𝐷. The generator 𝐺 transforms a noise
𝑧 sampled from a noise distribution 𝑝𝑧 to a data sample 𝐺(𝑧),
and tries to match the generated distribution 𝑝𝑔 to the real
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data distribution 𝑝𝑑. The discriminator 𝐷 is a binary classifier,
which takes real data as positive samples while synthetic data
as negative samples, and tries to distinguish them. The two-
player minimax game for continuous data can be formulated
as follows, where 𝐺(⋅) denotes the generated sample, 𝐷(⋅)
denotes the probability given by 𝐷 that the sample comes
from the real distribution.

min
𝐺

max
𝐷

𝑉 (𝐷,𝐺) =𝔼x∼𝑝𝑑(x)[log𝐷(x)]+

𝔼z∼𝑝𝑧(z)[log(1−𝐷(𝐺(z))]
(3)

It can be seen that the standard GAN framework requires the
generated data is differentiable so that the gradient can back-
propagate from D to G to update parameters of the model.
This constraint makes it not trivial to apply the standard GAN
framework to discrete data, such as EMR text data. One way to
solve this problem is to apply a typical reinforcement learning
(RL) algorithm to the generator. Text generation with RNNs
can be viewed as a sequential decision process. Hence, we can
model the generator as a policy of picking the next token. The
key elements in RL are as follows:
∙ State: The generated tokens so far 𝑥1:𝑡−1
∙ Action: The next token to be generated 𝑥𝑡
∙ Reward: The GAN discriminator’s output, i.e. the likeli-

hood that the synthetic sentence can fool the discrimina-
tor, which indicates how good the entire sentence is.

The reward defined by the aforementioned way will be
used for all actions (the generated tokens). However, in some
cases, the discriminator might assign a low reward due to
bad parts of the generated sentence, which is not fair for
the good generated parts. Thus, rewards for intermediate
generation steps are necessary. One simple strategy to compute
intermediate rewards is using Monte Carlo (MC) search [15].
In MC search, given a partially generated sentence 𝑋1:𝑡−1,
the model keeps sampling tokens from the current distribution
until the sentence ends, and repeats this sampling procedure
for 𝐾 times. These 𝐾 samples are fed to the discriminator,
and the average score is used as the reward for 𝑥𝑡.

With well-defined RL elements and intermediate rewards,
we can optimize the model with the REINFORCE algorithm.
Given a generator 𝐺𝜃 which tries to maximize the rewards it
receives from the discriminator, and a discriminator 𝐷𝜙 which
tries to distinguish real text from synthetic text, the objective
can be formulated as (4) and (5). For generating discrete data,
𝐺(𝑥𝑡∣𝑋1:𝑡−1) denotes the probability of generating token 𝑥𝑡
given previous generated tokens 𝑋1:𝑡−1.

max 𝐽𝐺(𝜃)=𝔼𝑋∼𝐺𝜃 [
𝑇∑

𝑡=1

log𝐺𝜃(𝑥𝑡∣𝑋1:𝑡−1)⋅𝑅𝐺𝜃
𝐷𝜙

(𝑋1:𝑡−1, 𝑥𝑡)] (4)

max 𝐽𝐷(𝜙)=𝔼𝑋∼𝑝𝑑 [log𝐷𝜙(𝑋)]+𝔼𝑋∼𝐺𝜃 [log(1−𝐷𝜙(𝑋))] (5)

where,

𝑅
𝐺𝜃
𝐷𝜙

(𝑠=𝑋1:𝑡−1, 𝑎=𝑥𝑡) =
1

𝐾

𝐾∑

𝑘=1

𝐷𝜙(𝑋
𝑘
1:𝑇 ), 𝑋1:𝑇 ∈ MC(𝑋1:𝑡)

(6)

Our synthetic EMR text generation model will base on the
GAN framework and use REINFORCE as our optimization
algorithm.

IV. METHOD

A. Medical Text Generative Adversarial Network

To apply GAN to generate synthetic EMR text data, we
propose a conditional GAN framework named Medical Text
Generative Adversarial Network (mtGAN). In the medical
domain, EMR text usually consists of disease descriptions and
diagnostic results. The underlying mapping from disease de-
scriptions to diagnostic results is what researchers essentially
focus on. Our proposed mtGAN is a conditional GAN [16]
that takes designated disease features as inputs, and generates
corresponding EMR text. For example, the disease features can
be pneumonia or lung cancer, which indicates the severity of
the disease. When we train the mtGAN model, these features
can be extracted from complete real EMRs. The overall
mtGAN model is shown in Fig. 1a. We input disease features
to guide the generator to produce corresponding synthetic
disease descriptions, which are fed to the discriminator with
real EMR text together. The classification results of D are
the reward signals to guide the training of G. A sketch of
the training of mtGAN is shown in Algorithm 1. It is worth
noting that the introduction of conditional constraint is the
main difference compared to seqGAN. More details will be
described in the following subsections.

Given a generator 𝐺𝜃 and a discriminator 𝐷𝜙, we introduce
an additional conditional constraint 𝑦 based on the original
GAN framework, and the objectives of the generator and the
discriminator can be rewritten from (4) (5) (6) to (7) (8) (9):

max 𝔼𝑋∼𝐺𝜃(⋅∣𝑦)[
𝑇∑

𝑡=1

log𝐺𝜃(𝑥𝑡∣𝑋1:𝑡−1, 𝑦) ⋅𝑅𝐺𝜃
𝐷𝜙

(𝑋1:𝑡−1, 𝑥𝑡, 𝑦)]

(7)

max 𝔼(𝑋,𝑦)∼𝑝𝑑 [log𝐷𝜙(𝑋, 𝑦)]+𝔼𝑋∼𝐺𝜃(⋅∣𝑦)[log(1−𝐷𝜙(𝑋, 𝑦))]
(8)

where,

𝑅
𝐺𝜃
𝐷𝜙

(𝑠=𝑋1:𝑡−1, 𝑦, 𝑎=𝑥𝑡) =
1

𝐾

𝐾∑

𝑘=1

𝐷𝜙(𝑋
𝑘
1:𝑇 , 𝑦)

, 𝑋1:𝑇 ∈ MC𝐺𝜃 (𝑋1:𝑡, 𝑦)

(9)

B. Generator Specification

We use LSTM, an improved variant of RNN, as our gen-
erative model. It is worth noticing that other RNN variants,
such as GRU, can also be used as the generative model. A
typical LSTM generator is shown in Fig. 1b. RNN maps the
input word embedding representation 𝑥𝑡 to the hidden state ℎ𝑡
with an update function 𝑓 recursively, i.e. ℎ𝑡 = 𝑓(ℎ𝑡−1, 𝑥𝑡).
The improvement of LSTM is that it uses three well-designed
gates to implement 𝑓 . Specifically, the Forget Gate decides
how much information to be abandoned from the cell state;
the Input Gate decides what information will be saved from
the cell state; the Output Gate filters the input and decides the
new hidden state. To impose the conditional constraint, the
disease features are fed into the model as an additional input
at every generation step.
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(a) mtGAN (b) Generator

Fig. 1: Illustration of mtGAN and the conditional generator model

Algorithm 1 Medical Text Generative Adversarial Network
Require: Generative network 𝐺𝜃 ; Rollout network 𝐺𝛽 and update rate 𝛼; Discrimina-

tive network 𝐷𝜙; Real EMR text dataset 𝑆+ = {𝑋1:𝑇 , 𝑦}
1: Initial 𝐺𝜃, 𝐷𝜙 with random weights 𝜃, 𝜙
2: Pre-train 𝐺𝜃 using MLE on 𝑆+

3: 𝛽 ← 𝜃
4: Generate samples 𝑆− using 𝐺𝜃 for training 𝐷𝜙

5: Pre-train 𝐷𝜙 by (8) on 𝑆+, 𝑆−

6: for total iterations do
7: for g-steps do
8: Assign random disease features 𝑦, generate sequences 𝑋1:𝑇 =

(𝑥1, . . . , 𝑥𝑇 ) ∼ 𝐺𝜃(𝑋∣𝑦)
9: for 𝑡 in 1 : 𝑇 do
10: Compute rewards 𝑅

𝐺𝛽
𝐷𝜙

by (9)

11: end for
12: Update generator parameters via (7)
13: end for
14: for d-steps do
15: Generate negative examples 𝑆− using current 𝐺𝜃 and combine with given

positive examples 𝑆+

16: Update discriminator parameters via (8) for 𝑘 epochs
17: end for
18: 𝛽 ← (1− 𝛼)𝜃 + 𝛼𝛽
19: end for

C. Discriminator Specification

The discriminator needs to execute a two-class text classi-
fication task. In this paper, we test three types of classifiers in
the experiment section: fastText, convolutional neural network
(CNN) and bidirectional recurrent neural network (BiRNN)
with attention mechanism.

a) fastText: FastText is a simple and efficient linear
model for text classification [17]. In fastText, each word
in a sentence is embedded into a word representation, and
these word representations are then averaged to obtain a text
representation, which is eventually fed into a linear classifier
to output the probability that the sentence comes from the real
distribution. In order to take the word order into account, we
also use additional n-gram features as the input.

b) CNN: Convolutional neural network is the main
framework for solving computer vision problems, but it has
also shown great performance in text classification recently
[18]. Given an input sentence 𝑋 = {𝑥1, . . . , 𝑥𝑇 }, we also
embed each word to a vector representation 𝜀1:𝑇 ∈ ℝ

𝑇×𝑘

first, where 𝑘 is the dimension of word embeddings. Then,
we perform convolutional operations on the sentence matrix

with different sizes and numbers of filters, of which the
second dimension is always 𝑘. For a filter with size ℎ,
we can get a feature map 𝑐 = {𝑐1, . . . , 𝑐𝑇−ℎ+1}, where
𝑐𝑖 = 𝑓(w ⊗ 𝜀𝑖:𝑖+ℎ−1 + 𝑏). Finally we perform max-pooling
on 𝑐 to get 𝑐 = max{𝑐} and fully-connected on 𝑐 to get the
final result. Similar to the discriminator in SeqGAN, we also
use a residual highway structure before final fully-connected
layers to enhance the predictive performance.

c) BiRNN-attention: RNN should be the most direct
model to conduct text classification task. We can simply
use hidden states of the last time step to predict labels.
In practice, we use the bidirectional LSTM structure and
the attention mechanism to enhance the performance [19].
The bidirectional structure uses both pre-word and post-word
contexts, rather than only pre-word contexts. The attention
mechanism considers that different time steps have different
contributions to the target task. Thus, it assigns normalized
weights to the hidden states of each time step. The attention
mechanism can be formulated as (10).

⎧⎨
⎩

𝑢𝑡 = tanh(𝑊𝑤ℎ𝑡 + 𝑏𝑤)

𝛼𝑡 =
exp(𝑢𝑇𝑡 𝑢𝑤)

Σ𝑡 exp(𝑢𝑇𝑡 𝑢𝑤)

𝑠 =
∑
𝑡

𝛼𝑡ℎ𝑡

(10)

where 𝑊𝑤 and 𝑏𝑤 denotes weights and bias of the attention
layer, 𝑢𝑤 denotes weights of the fully-connected layer to
compute 𝛼. 𝛼𝑡 is the weights of outputs at each time step,
and 𝑠 is the final output.

Among all discriminators, the conditional constraint 𝑦 is fed
into the final fully-connected layer as an additional input.

D. Approaches to Stable Adversarial Training

In the adversarial text generation, the training usually suffers
from two main problems [20]. One is the gradient vanishing
problem, which means if D is much stronger than G, the
generated samples will always obtain almost 0 reward, and
updates of the generator will nearly stop. The other is the
mode collapse problem, which is caused by the REINFORCE
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algorithm. The generator usually tends to produce short re-
peated parts to earn high evaluation from the discriminator,
which makes the overall quality and diversity of generated
samples pretty low. To alleviate these problems, we use several
approaches to enhance the stability of adversarial training.

a) Rescale Rewards: To alleviate the gradient vanish-
ing problem, a straight method is to use rescaled scores
as reward signals. In the experiment section, we test two
rescaled methods. The first one is proposed in MaliGAN
[21]: 𝑅 = 𝐷

1−𝐷 , and we call it ODA (Optimal Discriminator
Activation) for short. The second one is BRA(Bootstrapped
Ranking Activation), which is proposed in LeakGAN [22]:
𝑅 = 𝜎(𝛿 ⋅(0.5− rank(𝑖)

𝐵 )), where rank(⋅) denotes the sequence’s
high-to-low ranking in the batch, 𝛿 is the activation smoothness
hyper-parameter, 𝐵 is the batch size, and 𝜎(⋅) is a non-linear
function. ODA assumes that the discriminator is optimal, while
BRA uses the ranking information in each batch to rescale
rewards. These two methods do not require any modification
on the model structure. Furthermore, we can introduce an
action-independent baseline 𝑏, and use 𝑅 − 𝑏 to replace 𝑅
to guide the update of the generator’s parameters.

b) Teacher Forcing: Considering that the generator does
not get access to real samples directly, we conduct one step of
teacher forcing (MLE) after one step of adversarial training.
In fact, the difference between them is that teacher forcing
uses texts from real data and the value of rewards is 1, while
adversarial training uses texts generated by 𝐺𝜃 are rewards are
given by discriminator. In practice, we find teacher forcing can
effectively alleviate the mode collapse problem.

c) Delayed Rollout Network: From the RL viewpoint, the
generator can be viewed as a actor and the discriminator can
be viewed as a critic [23]. To improve the training convergence
and stability, we build up a copy of generator 𝐺𝛽 that is soft-
updated with 𝐺𝜃 to sample sentences in MC search. This
delayed rollout network has smaller changes in parameters,
which makes the training more stable.

V. EXPERIMENT

In this section, we first describe the EMR text dataset that
we used. Then, we describe the implementation details of
our model. To ensure mtGAN achieves the best performance,
we conduct experiments with different rescale methods and
discriminator structures. To test the effectiveness of our model,
we design the micro-level, macro-level and application-level
experiments, from which we can see mtGAN has better
performance than other baselines.

A. Dataset

The EMR texts we used are in Chinese, but it is worth
noticing that the difference between EMR texts in different
languages only lies in the approaches of data pre-processing.
After EMR texts are converted into sequences of word em-
bedding vectors, we can simply apply our model to them.

We collected 2216 EMR texts from the respiration depart-
ment of a hospital to construct the dataset. Original EMR
texts include personal information, chief complaint, history of

TABLE I: Examples of original real EMR text

Type Examples
Pneumonia 患者 病情 平稳 ， 偶有 咳嗽 ， 咳痰 ， 为 白色

痰 ， 无 明显 喘 憋 ， 无 痰中 带血 ， 无发热
。 今日 为行 进一步 气管镜 下 治疗 入院 。 发
病 以来 ， 神清 清楚 ， 精神 可

Lung Cancer 患者 1 年 多 前 出现 咳嗽 ， 咳痰 费力 ， 无 明
显 气促 ， 在 外院 考虑 为 ＂支气管炎＂， 给
予 口服 头孢类 抗生素 ， 服药 后 疗效 不佳 ，
行 胸部 CT 示 右肺 占位 。

TABLE II: Examples of generated synthetic EMR text

Type Examples
Pneumonia 患者于1周前无明显诱因出现咳嗽，咳白色粘

痰，伴活动后加重，休息后可缓解，间断服用
镇咳药物等治疗，未行正规诊治。

Lung Cancer 患者10多年前开始出现咳嗽、咳痰，痰中带血，
当地医院查胸部CT示纵隔肿大淋巴结，右肺下叶
结节，后行气管镜时治疗收入院。

present and past illness and admission diagnosis. To protect
the privacy of patients, we remove sensitive information such
as person names and place names, and use history of present
illness as input sequences and admission diagnosis as sequence
tags, or the conditional constraint of generation. In practice,
we use two tags: pneumonia and lung cancer. We segment
words in each EMR text with the jieba package [24] with an
additional medical dictionary, and in the end, the dictionary
of this dataset includes 7674 words. We cut the first 40 words
of each EMR text as the input to the model for convenience,
as it will not take a long time to train the model but can
also generate informative results. After removing invalid and
repeated data, the dataset is split into training, validation and
test set with the proportion of 0.7, 0.1, 0.2 separately. A
pneumonia example and a lung cancer example of real EMR
text data are shown in Tab. I.

B. Implementation Details

Our model is implemented in Python with TensorFlow
library. For the generator, the word embedding dimension and
the hidden state dimension of LSTM cell are both set to 32.
The word embedding layer are jointly trained with the gen-
erator. For the discriminator, the word embedding dimension
is also set to 32. To alleviate overfitting, we add a dropout
layer with 0.2 drop rate before the fully-connected layer and
L2 regularization with 𝜆 = 0.1. The word embedding layer is
fixed with pretrained weights by Word2Vec. We first pretrain
the generative model 1000 epochs by MLE and pretrain the
discriminative model 500, 100, 100 epochs for fastText, CNN
and BiRNN-attention separately by minimizing the cross-
entropy between synthetic samples and real samples. In the
adversarial training, we update the generator five steps and
then update the discriminator five steps. Each REINFORCE
step is companied with one step of teacher forcing. The total
number of adversarial training epochs is 100. A pneumonia
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Fig. 2: NLL-test results with different discriminators and
rescale reward methods

TABLE III: Micro-Level Experiment Results

Model NLL-test self-BLEU
MLE 6.2141 0.9270

SeqGAN 5.9685 0.9267
mtGAN-BiRNN-BRA 6.1191 0.9155
mtGAN-BiRNN-ODA 5.9561 0.9209
mtGAN-CNN-ODA 5.7764 0.9182

example and a lung cancer example of generated synthetic
EMR text data are shown in Tab. II.

C. Micro-Level Evaluation

We test different discriminator structures and rescale meth-
ods with micro-level evaluation metrics in this subsection. To
evaluate the model performance, we use the negative log-
likelihood on the test set (NLL-test) and self-BLEU [25] as
evaluation metrics. NLL-test evaluates the model’s capacity
to fit the real data and self-BLEU is a metric to evaluate the
diversity of generated synthetic sentences. The calculation of
NLL-test can be formulated as:

NLL𝑡𝑒𝑠𝑡 = −𝔼x∈𝑆test [

𝑇∑
𝑡=1

log𝐺𝜃(𝑥𝑡∣𝑋1:𝑡−1)] (11)

For the self-BLEU metric, since BLEU aims to evaluate how
similar two sentences are, we can calculate BLEU between
each sentence and the rest in a group of generated sentences,
which indicates how this sentence resembles with others. The
average BLEU score of each generated sample is defined as
self-BLEU, which evaluate the diversity of current generative
model. The higher self-BLEU score indicates the less diversity
of generated samples. The calculation of self-BLEU can be
formulated as:

self-BLEU = 𝔼x∈𝑆test [BLEU(𝑋∣∁𝑆test(𝑋))] (12)

The NLL-test scores of MLE training and adversarial train-
ing with different discriminative models and rescale reward
methods are shown in Fig. 2. SeqGAN is an extended con-
ditional model based on the original version and does not
use any rescale reward methods, which we also view as a

baseline model together with MLE. It can be seen that the
rescale reward method ODA is better than BRA and no rescale
method. Comparing the curves of MLE, SeqGAN, mtGAN-
BiRNN-ODA and mtGAN-CNN-ODA, it is obvious that our
mtGAN with CNN discriminator can achieve a better NLL-
test score than BiRNN discriminator. In addition, all models
trained by adversarial training are better than the model trained
by MLE. The fastText discriminator will assign improper
reward signals, which lead to the failure of training generator.

The NLL-test and self-BLEU scores are shown in Tab. III.
The mtGAN-CNN model can achieve highest NLL-test score
and relatively low self-BLEU score, which indicates that our
model has the strong ability to fit the real data and generate
diverse examples at the same time. We will use mtGAN-CNN-
ODA as our main model to conduct the following evaluation.

D. Macro-Level Evaluation

For the macro-level evaluation, we conduct an adversarial
evaluation experiment similar to [10] to fairly evaluate the
whole quality of synthetic EMR texts. The idea of adversarial
evaluation resembles the idea of Turing test. In the adversarial
evaluation, we train a separate machine evaluator in place
of the human evaluator to distinguish real EMR texts and
generated synthetic EMR texts. We report Adversarial Success
(AdverSuc) on the test set, which is the fraction of instances
that generated samples can fool the evaluator. Higher scores
of AdverSuc indicates that the generated synthetic samples
are more similar to real samples. However, the adversarial
evaluation is model-dependent, a poor discriminative model
can also lead to a low accuracy of the evaluator. Thus, we
also set up three manually-designed situations to measure the
capacity of the evaluator.

1) Randomly split real EMR texts as positive examples and
negative examples. An ideal evaluator should give an
accuracy of 0.5.

2) Randomly split generated EMR texts as positive exam-
ples and negative examples. An ideal evaluator should
also give an accuracy of 0.5.

3) Use real EMR texts as positive examples and random
generated EMR texts as negative examples. An ideal
evaluator should give an accuracy of 1.0.

We report the absolute difference value between the accuracy
of the evaluator and the ideal accuracy in such three exper-
iments as evaluator reliability error (ERE). The lower ERE
value indicates the higher model reliability. We train a separate
discriminator in the adversarial evaluation experiment. The
AdverSuc and ERE scores of MLE, SeqGAN and our mtGAN
are shown in Tab. IV. Our mtGAN model can achieve the
highest AdverSuc and lower meanERE than MLE at the same
time, which indicates the synthetic EMR texts generated by
our model have the higher quality than samples generated by
MLE, and this result is reliable. It is hard to compare the
results between SeqGAN and mtGAN, as we are not sure what
mtGAN’s AdverSuc will be if the evaluator is more reliable.
However, the AdverSuc of SeqGAN is pretty low, which
implies the quality of synthetic EMR texts is not satisfactory.
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TABLE IV: Macro-Level Experiment Results

Model AdverSuc ERE1 ERE2 ERE3 meanERE
MLE 0.3007 0.0068 0.0676 0.3446 0.1396

SeqGAN 0.1351 0.0203 0.0270 0.1081 0.0518
mtGAN 0.3041 0.0811 0.0270 0.2804 0.1295

TABLE V: Application-Level Experiment Results

Model

Accuracy Data source
Real Synthetic Mix

MLE 0.7500 0.7432 0.7568
SeqGAN 0.7500 0.6959 0.7095
mtGAN 0.7500 0.7432 0.7635

E. Application-Level Evaluation

For the application-level evaluation, we design a practical
classification experiment to test if the samples generated by
our model can be used as the source of data augmentation and
help other machine learning tasks. The labels are pneumonia
and lung cancer, which is set same to the conditional constraint
used in the model training. It is worth noticing that during
the whole training process (from pretraining to adversarial
training), our model does not get access to the test set, so
we can assign labels to our model to generate corresponding
samples, and use these synthetic EMR texts to train a classifier
and evaluate it on the test set. Ideally, using generated samples
to train a classifier should achieve similar performance to using
real samples, and adding generated samples to real samples
should achieve a higher score as the result of data augmen-
tation. The application-level evaluation results are shown in
Tab. V. It can be seen that the classifier can achieve the best
accuracy 76.35% with the mix of real EMR text and synthetic
EMR text. Thus, the synthetic EMR texts generated by our
model do have similar properties to real EMR texts, and can
be used as a data augmentation approach to assist other tasks
such disease classification task.

VI. CONCLUSION

In this paper, we propose a conditional model mtGAN to
generate synthetic EMR texts. This method solves the privacy
problem and the insufficient and imbalance samples problem
naturally. The micro-level, macro-level and application-level
evaluation demonstrate that our model can generate more
realistic EMR texts, which has a wide range of applications.
The future work will focus on the hidden representation of
EMR texts, which will help us impose more direct control to
the generation process and also help us analyze the similarity
of different EMR texts to better understand diseases.
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