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Introduction

Motivations: More complex deep neural networks have been proposed
to further improve performance, but often at the cost of more expensive
computation. However, in many real-world scenarios, we encounter a sig-
nificant constraint of energy or computational cost for real-time inference.
Goal: Predicting both accurate and fast focusing on test-time energy-
efficient inference of image classification.
Contributions:
IProposed an energy-efficient model by cascading deep classifiers with a

policy module.

IPolicy model and cascading classifiers are jointly trained by
REINFORCE.

IThis model can choose the smallest classifier which is sufficient to make
accurate prediction for each input instance.

IAchieve both high accuracy and amortized efficiency on CIFAR and
ImageNet datasets.

Method

Energy-constrained Inference of Cascaded Classifiers:
Suppose we have K classifiers {Ck}Kk=1 with different energy cost {Fk}Kk=1,
input x with true label y and predicted label ŷ , and a policy module Π(k|x)
which decides the probability of assigning input x to classifier Ck.

ITarget: Jointly train all classifiers {Ck} and the policy Π(k|x) to
minimize the expected loss function under the constraint that the
expected energy cost should be no larger than a desired budget B

IConstrained optimization:

max
Π,{Ct}Kt=1

E(x ,y)∼D,kx∼Π(·|x),ŷ∼Ckx(·|x) [−L (ŷ , y)]

s.t E(x ,y)∼D,kx∼Π(·|x) [Fkx] < B,
(1)

where kx denotes the (random) classifier ID assigned to x .

IUnconstrained optimization:

max
Π,{Ct}Kt=1

E(x ,y)∼D,kx∼Π(·|x),y ′∼Ckx(·|x) [−L (y ′, y)− αFkx] (2)

where α controls the trade-off between the predictive loss function and
the energy cost.

Energy Efficient Inference via Optimal Stopping:

IFraming Π into a K -step optimal stopping process.

Π(k|x) = πk(sk(x))
k−1∏
t=1

(1− πt(st(x))) (3)

(st: some feature related to classifier Ct, πt(·): stopping probability.)

IFraming the decision module as a Markov decision process.
IObservation: st. We use the output label probability, that is st(x) = Ct(·|x).
IAction: stop or forward
IReward: consisting of the negative loss function for prediction and the accumulated

energy cost from the first step. We use the FLOPs count as the cost.

R(k, x , y , ŷ) = −L (ŷ , y)− α
k−1∑
t=1

Ft (4)

IFinal goal: Assume the stopping probabilities {πt} and classifiers {Ct}
are parameterized by θ = {θπt, θCt}Kt=1. Our final goal is to find the
optimal θ to maximize the expected return, by unrolling the conditional
distributions defined by the entire policy:

J(θ) = E(x ,y)∼D
[
Ek∼Π(·|x),ŷ∼Ck(·|x)R(k, x , y , ŷ)

]
= E(x ,y)∼D

[ K∑
k=1

k−1∏
t=1

(1− πt(st(x); θ))

· πk(sk(x); θ) ·
∑
ŷ

Ck(ŷ |x ; θ) · R(k, x , y , ŷ)
]
.

(5)

Model

Figure 1: Our proposed model: Given an image in the dataset, starting from smallest model, our agent will decide whether to
move to the next deeper model. If we decide to stop at a classifier, we predict the label based on the classifier. Finally, the agent
will receive a reward consisting of both the negative loss function for prediction and the accumulated energy cost. Inside our agent,
a stopping policy module takes label probability of a classifier’s top layer as input and decides whether to stop or continue.

Solving by REINFORCE:

∇̂θJ = ∇θ

( k−1∑
t=1

log(1− πt(st(x); θ)) + log(πk(sk(x); θ))

+log(Ck(ŷ |x ; θ))
)
· (R(k, x , y , ŷ)− b)

(6)

The baseline b is to reduce the variance in the estimated policy gradient.

Experiment

IDatasets: CIFAR-10, CIFAR-100, ImageNet32x32, ImageNet

IBaselines: Static ResNets[2], Adaptive Neural Networks[1]

ICompare with Static ResNet Classifiers:

IComparison of Joint Training:

Figure 2: Results on CIFAR-10/100: The x-axis denotes the millions of FLOPs and y-axis denotes the corresponding
accuracy obtained by the static ResNet (gray), our model (orange), and the simplified version of our model (blue, in which
we only train the policy module), respectively.

IAccuracy and Sample distribution:

Figure 3: Accuracy distribution of classifiers in the cascade: The first three figures plot accuracy distributions on the
CIFAR-10, CIFAR-100 and ImageNet32x32 datasets. The i -th row and j-th column denotes the average accuracy predicted
by the i -th classifier of samples assigned to the j-th classifier. The fourth figure is the distribution of test images on
individual classifiers, where x-axis indexes five classifiers and y-axis denotes the proportion of samples eventually assigned to
the corresponding classifier.

IConclusion: Tested on image classification, our model assigns a large
portion of images to the smaller networks and remaining difficult images
to the deeper models when necessary. In this way, our model is able to
achieve both high accuracy and amortized efficiency during test time.
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