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Motivations: More complex deep neural networks have been proposed

to further improve performance, but often at the cost of more expensive [ | )
computation. However, in many real-world scenarios, we encounter a sig- ((hsster 1) Q[C'“s‘ﬁe”J [C'assiﬁer"] [c.assiﬁer...J Cnssiier v | oo
nificant constraint of energy or computational cost for real-time inference. O : i ]|
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» Proposed an energy-efficient model by cascading deep classifiers with a Prediction OQ~—— O Ground Truch Prediction  Ground Truth
PO |Cy module Flgu re 1: Our proposed model: Given an image in the dataset, starting from smallest model, our agent will decide whether to
. _ move to the next deeper model. If we decide to stop at a classifier, we predict the label based on the classifier. Finally, the agent
= PO |Cy model a nd Cascading ClaSSiflerS are jOlnt/y trained by will receive a reward consisting of both the negative loss function for prediction and the accumulated energy cost. Inside our agent,

a stopping policy module takes label probability of a classifier's top layer as input and decides whether to stop or continue.

Solving by REINFORCE:

REINFORCE.

» T his model can choose the smallest classifier which is sufficient to make

accurate prediction for each input instance. P
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— The baseline b is to reduce the variance in the estimated policy gradient.
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Suppose we have K classifiers { G} £, with different energy cost { Fi} 7,

input x with true label y and predicted label y, and a policy module (& |x) » Datasets: CIFAR-10, CIFAR-100, ImageNet32x32, ImageNet

which decides the probability of assigning input x to classifier Cx. » Baselines: Static ResNets|2], Adaptive Neural Networks|1]
» Compare with Static ResNet Classifiers:

» Achieve both high accuracy and amortized efficiency on CIFAR and
ImageNet datasets.
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» Target: Jointly train all classifiers { C,} and the policy IM(k|x) to

CIFAR-10 CIFAR-100 ImageNet32x32 ( Top-5 Error)
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» Unconstrained optimization:
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Flgu re 2: Results on CIFAR-10/100: The x-axis denotes the millions of FLOPs and y-axis denotes the corresponding
accuracy obtained by the static ResNet (gray), our model (orange), and the simplified version of our model (blue, in which
we only train the policy module), respectively.

Energy Efficient Inference via Optimal Stopping:

» Framing I1 into a K-step optimal stopping process. » Accuracy and Sample distribution:
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» Framing the decision module as a Markov decision process.
» Observation: s;. We use the output label probability, that is s;(x) = C;(|x).
» Action: stop or forward
» Reward: consisting of the negative loss function for prediction and the accumulated
energy cost from the first step. We use the FLOPs count as the cost.

Classifier

Flgu re 3: Accuracy distribution of classifiers in the cascade: The first three figures plot accuracy distributions on the
CIFAR-10, CIFAR-100 and ImageNet32x32 datasets. The /-th row and j-th column denotes the average accuracy predicted

by the i-th classifier of samples assigned to the j-th classifier. The fourth figure is the distribution of test images on

individual classifiers, where x-axis indexes five classifiers and y-axis denotes the proportion of samples eventually assigned to
the corresponding classifier.

» Conclusion: Tested on image classification, our model assigns a large
portion of images to the smaller networks and remaining difficult images
to the deeper models when necessary. In this way, our model is able to
achieve both high accuracy and amortized efficiency during test time.
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» Final goal: Assume the stopping probabilities {7;} and classifiers { C;}
are parameterized by 6 = {0™, 0%}X . Our final goal is to find the
optimal 6 to maximize the expected return, by unrolling the conditional
distributions defined by the entire policy:
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